Intelligent LED Driver (Constant Current)

- Dimming interface: DALI, Push DIM.

DALS
T-PWM

Flicker-Free

IEEE 1789

Dimmable:

"."IIIIIIII

Specification

Model		DALI-15-100-700-U1P1			DALI-25-150-900-U1P1	DALI-36-200-1200-U1P1
OUTPUT	Output Voltage	10-54Vdc				
	Max Output Voltage	58 Vdc				
	Non-load Output Voltage	ovdc				
	Output Current	100-700mA			150-900mA	200-1200mA
	Output Power	1~15W			1.5~25W	2~36W
	Strobe Level	Almost flicker-free / High frequency exemption level				
	Dimming Range	0~100\%, 0.01\% dimming depth				
	Dimming Frequency	$\leqslant 3600 \mathrm{~Hz}$				
	LF Current Ripple(120Hz)	<2\%				
	Current Accuracy	$\pm 5 \%$				
	Ripple \& Noise	<2V				
INPUT	Dimming Interface	DALI, Push DIM				
	Input Voltage	100-277Vac, (Max. 90-305Vac)				
	Frequency	50/60Hz				
	Input Current	115Vac $\leqslant 0.2 \mathrm{~A}, 230 \mathrm{Vac} \leqslant 0.15 \mathrm{~A}, 277 \mathrm{Vac} \leqslant 0.1 \mathrm{~A}$			115Vac $\leqslant 0.3 \mathrm{~A}, ~ 230 \mathrm{Vac} \leqslant 0.2 \mathrm{~A}, 277 \mathrm{Vac} \leqslant 0.15 \mathrm{~A}$	115Vac $\leqslant 0.45 \mathrm{~A}, ~ 230 \mathrm{Vac} \leqslant 0.25 \mathrm{~A}, ~ 277 \mathrm{Vac} \leqslant 0.2 \mathrm{~A}$
	Power Factor	PF $>0.97 / 115 \mathrm{Vac}, \mathrm{PF}>0.93 / 230 \mathrm{Vac}, \mathrm{PF}>0.88 / 277 \mathrm{Vac}$			PF $>0.97 / 115 \mathrm{Vac}, \mathrm{PF}>0.93 / 230 \mathrm{Vac}, \mathrm{PF}>0.85 / 277 \mathrm{Vac}$	PF>0.95/115Vac, PF>0.9/230Vac, PF>0.85/277Vac
	THD	<16\%/115Vac, <20\%/230Vac, <29\%/277Vac			<16\%/115Vac, <20\%/230Vac, <22\%/277Vac	
	Efficiencyltyp.)	82\%			85\%	88\%
	Inrush Currenttyp.)	Cold start 8A at 230Vac (twidth=75us measured at 50% \|peak			Cold start 10A at 230Vac (twidh $=75$ s measured at 50% lpeak)	Cold start 20A at 230 Vac (twidth=75us measured at 50% lpeak)
	Anti Surge	L-N: 1kV				
	Leakage Current	$<0.5 \mathrm{~mA} / 230 \mathrm{Vac}$				
ENVIRONMENT	Working Temperature	ta: $-30^{\circ} \mathrm{C} \sim 55^{\circ} \mathrm{C}$ tc: $75^{\circ} \mathrm{C}$				
	Working Humidity	$20 \sim 95 \%$ RH, non-condensing				
	Storage Temp., Humidity	$-40^{\circ} \mathrm{C} \sim 80^{\circ} \mathrm{C}, 10 \sim 95 \% \mathrm{RH}$				
	Temp. Coefficient	$\pm 0.03 \% /{ }^{\circ} \mathrm{C}\left(0-50^{\circ} \mathrm{C}\right)$				
	Vibration	10-500Hz, 2 G 12 min .11 cycle, period for 72 min . each along $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axes				
PROTECTION	Over-heat Protection	Intelligently adjusting or turning off the output current if the PCB temperature $\geqslant 110^{\circ} \mathrm{C}$, auto recovers				
	Over Load Protection	Shut down the output when current load $\geqslant 102 \%$, auto recovers				
	Short Circuit Protection	Shut down automatically if short circuit occurs, auto recovers				
	Non-load Protection:	Shut down the output if no load, auto recovers				
$\begin{aligned} & \text { SAFETY } \\ & \& \\ & \text { EMC } \end{aligned}$	Withstand Voltage	I/P-0/P: 3750Vac				
	Isolation Resistance	I/P-0/P: 100 M / $500 \mathrm{VDC} / 25^{\circ} \mathrm{C} / 70 \% \mathrm{RH}$				
	Safety Standards	UL	America	U18750		
		CUL	Canada	CSAC22.2 No. 250.13		
		CE	European Union	EN61347-1, EN61347-2-13, EN62384		
	EMC Emission	FCC	America	FCC part 15		
		CE	European Union	En55015, EN61000-3-2	2, EN61000-3-3	
	EMC Immunity	EN61000-4-2,3,4,5,6,8,11 EN61547				
	Strobe Test Standard	IEEE 1789				
OTHERS	Dimensions	$175 \times 44 \times 30 \mathrm{~mm}(L \times W \times H)$				
	Packing	$178 \times 48 \times 33 \mathrm{~mm}(\mathrm{~L} \times \mathrm{W} \times \mathrm{H})$				
	Weight(G.W.)	$175 \mathrm{~g} \pm 10 \mathrm{~g}$				

LED Current Selection

Quick options：DIP switch for 8 optional currents＇quick selection（see the table below）

DIP Switch		】 】 山	」 \dagger	」甲】	岀甲	† 」	† 「	†甲	†甲	甲 1 ON OFF
DALI－15－100－700－U1P1	Output Current	100 mA	180 mA	300 mA	350 mA	450 mA	500 mA	600 mA	700 mA	
	Output Voltage	10－54V	10－54V	10－50V	10－43V	10－34V	10－30V	10－25V	10－22V	
	Output Power	1W－5．4W	1．8W－9．72W	3W－15W	3．5W－15．05W	4．5W－15．3W	5W－15W	6W－15W	7W－15．4W	

DIP Switch		崮 \downarrow	崮 \dagger	■ \dagger	直甲	¢ 】 ！	† ¢	¢甲	甲甲 \dagger	ON OFF
DALI－25－150－900－U1P1	Output Current	150 mA	250 mA	300 mA	350 mA	500 mA	600 mA	700 mA	900 mA	
	Output Voltage	10－54V	10－54V	10－54V	10－54V	10－50V	10－42V	10－36V	10－28V	
	Output Power	1．5W－8．1W	2．5W－13．5W	3W－16．2W	3．5W－18．9W	5W－25W	6W－25．2W	7W－25．2W	9W－25．2W	

DIP Switch		尚 \downarrow	崮 1	午甲	尚甲	甲 」	† 「	†甲	甲甲 \dagger	∓ 1 ON OFF
DALI－36－200－1200－U1P1	Output Current	200 mA	350 mA	500 mA	600 mA	700 mA	900 mA	1050 mA	1200 mA	
	Output Voltage	10－54V	10－54V	10－54V	10－54V	10－52V	10－40V	$10-35 \mathrm{~V}$	10－30V	
	Output Power	2W－10．8W	3．5W－18．9W	5W－27W	6W－32．4W	7W－36．4W	9W－36W	10．5W－36．75W	12W－36W	

＊After current setting by DIP switch，power off and then power on to make the new current effective．
＊E．g．LED $3.2 \mathrm{~V} / \mathrm{pcs}$ ： $10-54 \mathrm{~V}$ can power $3-16 \mathrm{pcs}$ LEDs in series， $10-22 \mathrm{~V}$ can power $3-6 \mathrm{pcs}$ LEDs，the max quantity of LEDs in series will be subject to the actual voltage of LED．

Advanced options：connect ISET port with resistors of different values to set up currents

	DALI－15－100－700－U1P1 Connecting ISET with resistors can obtain the following typical currents．	Current（mA） Resistor（K贝）	140 mA 33.93 KR	$\begin{aligned} & 180 \mathrm{~mA} \\ & 27.78 \mathrm{~K} \mathrm{\Omega} \end{aligned}$	$\begin{aligned} & 220 \mathrm{~mA} \\ & 23.19 \mathrm{~K} \Omega \end{aligned}$	$\begin{aligned} & 260 \mathrm{~mA} \\ & 19.32 \mathrm{KO} \end{aligned}$	300 mA $16.34 \mathrm{~K} \Omega$	$\begin{aligned} & 340 \mathrm{~mA} \\ & 14.05 \mathrm{KO} \end{aligned}$	380 mA $11.96 \mathrm{~K} \Omega$	$\begin{aligned} & 420 \mathrm{~mA} \\ & 10.17 \mathrm{~K} \Omega \end{aligned}$	$\begin{aligned} & 460 \mathrm{~mA} \\ & 8.57 \mathrm{KO} \end{aligned}$	$\begin{aligned} & 500 \mathrm{~mA} \\ & 7.16 \mathrm{Kn} \end{aligned}$
		Current（mA） Resistor（K $)^{\text {）}}$	540 mA $5.98 \mathrm{~K} \Omega$	$\begin{aligned} & 580 \mathrm{~mA} \\ & 4.9 \mathrm{~K} \Omega \end{aligned}$	$\begin{aligned} & 620 \mathrm{~mA} \\ & 3.87 \mathrm{KQ} \end{aligned}$	660 mA $3 \mathrm{~K} \Omega$						
	DALI－25－150－900－U1P1 Connecting ISET with resistors can obtain the following typical currents．	Current（mA） Resistor（K贝）	$\begin{aligned} & 200 \mathrm{~mA} \\ & 34 \mathrm{KR} \Omega \end{aligned}$	$\begin{aligned} & 250 \mathrm{~mA} \\ & 26.93 \mathrm{~K} \Omega \end{aligned}$	$\begin{aligned} & 300 \mathrm{~mA} \\ & 22.3 \mathrm{KO} \end{aligned}$	$\begin{aligned} & 350 \mathrm{~mA} \\ & 18.98 \mathrm{~K} \Omega \end{aligned}$	$\begin{aligned} & 400 \mathrm{~mA} \\ & 15.93 \mathrm{KQ} \end{aligned}$	$\begin{aligned} & 450 \mathrm{~mA} \\ & 13.31 \mathrm{~K} \Omega \end{aligned}$	$\begin{aligned} & 500 \mathrm{~mA} \\ & 11.45 \mathrm{~K} \Omega \end{aligned}$	$\begin{aligned} & 550 \mathrm{~mA} \\ & 9.53 \mathrm{~K} \Omega \end{aligned}$	$\begin{aligned} & 600 \mathrm{~mA} \\ & 8.23 \mathrm{KQ} \end{aligned}$	$\begin{aligned} & 650 \mathrm{~mA} \\ & 6.72 \mathrm{~K} \end{aligned}$
		Current（mA） Resistor（K贝）	$\begin{aligned} & 700 \mathrm{~mA} \\ & 5.62 \mathrm{Kn} \end{aligned}$	$\begin{aligned} & 750 \mathrm{~mA} \\ & 4.58 \mathrm{KQ} \end{aligned}$	$\begin{aligned} & 800 \mathrm{~mA} \\ & 3.64 \mathrm{KO} \end{aligned}$	$\begin{aligned} & 850 \mathrm{~mA} \\ & 2.81 \mathrm{KR} \end{aligned}$						
Connect to resistor	DALI－36－200－1200－U1P1 Connecting ISET with resistors can obtain the following typical currents．											
		Current（mA） Resistor（K贝）	$\begin{aligned} & 250 \mathrm{~mA} \\ & 41.6 \mathrm{~K} \Omega \end{aligned}$	$\begin{aligned} & 300 \mathrm{~mA} \\ & 34.7 \mathrm{KQ} \end{aligned}$	$\begin{aligned} & 350 \mathrm{~mA} \\ & 29.52 \mathrm{KO} \end{aligned}$	$\begin{aligned} & 400 \mathrm{~mA} \\ & 25.4 \mathrm{KQ} \end{aligned}$	$\begin{aligned} & 450 \mathrm{~mA} \\ & 21.9 \mathrm{KR} \end{aligned}$	$\begin{aligned} & 500 \mathrm{~mA} \\ & 19 \mathrm{~K} \Omega \end{aligned}$	$\begin{aligned} & 550 \mathrm{~mA} \\ & 16.66 \mathrm{~K} \Omega \end{aligned}$	$\begin{aligned} & 600 \mathrm{~mA} \\ & 14.5 \mathrm{KO} \end{aligned}$	$\begin{aligned} & 650 \mathrm{~mA} \\ & 12.62 \mathrm{KQ} \end{aligned}$	$\begin{aligned} & 700 \mathrm{~mA} \\ & 11.19 \mathrm{KO} \end{aligned}$
		Current（mA） Resistor（K贝）	$\begin{aligned} & 750 \mathrm{~mA} \\ & 9.8 \mathrm{~K} \Omega \end{aligned}$	$\begin{aligned} & 800 \mathrm{~mA} \\ & 8.57 \mathrm{Kn} \end{aligned}$	$\begin{aligned} & 850 \mathrm{~mA} \\ & 7.43 \mathrm{KO} \end{aligned}$	$\begin{aligned} & 900 \mathrm{~mA} \\ & 6.42 \mathrm{~K} \Omega \end{aligned}$	$\begin{aligned} & 950 \mathrm{~mA} \\ & 5.47 \mathrm{KO} \end{aligned}$	$\begin{aligned} & 1000 \mathrm{~mA} \\ & 4.65 \mathrm{KQ} \end{aligned}$	$\begin{aligned} & 1050 \mathrm{~mA} \\ & 3.93 \mathrm{~K} \mathrm{\Omega} \end{aligned}$	$\begin{aligned} & 1100 \mathrm{~mA} \\ & 3.2 \mathrm{~K} \Omega \end{aligned}$	$\begin{aligned} & 1150 \mathrm{~mA} \\ & 2.57 \mathrm{~K} \mathrm{~K} \end{aligned}$	

Dimensions

Unit：mm

LTECIH

Wiring diagram

DALI connection

Push DIM connection

0~100\% Dimming
Short press to on/off, long press to dim

> The dimming interface priority: First DALI, next Push DIM.

Push DIM

Reset Switch

Installation Precautions

Please do not stack the products. The distance between two products should be $\geqslant 15 \mathrm{~cm}$ so as not to affect heat dissipation and the lifespan of the products.

Please not place the products on LED drivers. The distance between the product and the driver should be $\geqslant 15 \mathrm{~cm}$ so as not to affect heat dissipation and shorten the lifespan of the products.

Flicker Test Form

Attentions

- Products shall be installed by qualified professionals.
- LTECH products are non-waterproof (special models excepted). Please avoid the sun and rain. When installed outdoors, please ensure it is mounted in a water proof enclosure
- Good heat dissipation will extend the working life of products. Please ensure good ventilation
- Please check if the working voltage used complies with the parameter requirements of products.
- The diameter of wire used must be able to load the light fixtures you connect and ensure the firm wiring
- Before you power on products, please make sure all the wiring is correct in case of incorrect connection that causes damage to light fixtures
- If a fault occurs, please do not attempt to fix products by yourself. If you have any question, please contact your suppliers
* This manual is subject to changes without further notice. Product functions depend on the goods. Please feel free to contact our official distributors if you have any question

Warranty Agreement

- Warranty periods from the date of delivery: 5 years
- Free repair or replacement services for quality problems are provided within warranty periods.

Warranty exclusions below:

- Beyond warranty periods.
- Any artificial damage caused by high voltage, overload, or improper operations
- Products with severe physical damage.
- Damage caused by natural disasters and force majeure.
- Warranty labels and barcodes have been damaged.
- No any contract signed by LTECH

1. Repair or replacement provided is the only remedy for customers. LTECH is not liable for any incidental or consequential damage unless it is within the law.
2. LTECH has the right to amend or adjust the terms of this warranty, and release in written form shall prevail

Update Log

Version	Updated Time		Update Content
A3	2020.05 .18	Add Flicker Test Form; P1 plus life 50000 hours	Updated by
A4	2021.01 .25	Technical parameters increase LF current ripple	Liu Weili
A5	2022.04 .22	Update product certification icons	Liu Weili

